The Calibration of Displacement Sensors

Author:

Haitjema HanORCID

Abstract

Displacement measuring sensors play an essential role in all aspects of dimensional metrology. They can be used for direct displacement measurements but more often they are part of a measurement system, such as an atomic force microscope, roughness tester or a coordinate measuring machine (CMM). In order to achieve traceable measurements that can be related to the meter, these sensors must be calibrated against a reference standard that is more noise- and error-free than the sensor under test. A description of the various methods to achieve the ultimate traceability, repeatability and accuracy of such a calibration system is the main part of this paper. Various interferometric methods will be reviewed including several methods that use directly a primary standard as a reference: either an iodine-stabilized laser or a frequency comb. It is shown that various methods exist to quantify or mitigate the periodic errors that are inherent to interferometric methods. Also it is shown that knowledge of this periodicity may lead to a separation of periodic and non-periodic non-linearity errors of both the calibration instrument as the sensor under test. This review is limited to small-range sensors, typically with a range <100 μm. It is concluded that today’s technology enables sound and traceable sensor calibration up to the sub-nano and even picometer level of uncertainties

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference70 articles.

1. Measurement systems Application & Design;Doebelin,2003

2. Probing Systems in Dimensional Metrology

3. Displacement measurement;Leach,2014

4. Advances in inductive position sensor technology

5. Capacitive sensors for displacement measurement in the subnanometer range;Xia,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3