Application of a Smart City Model to a Traditional University Campus with a Big Data Architecture: A Sustainable Smart Campus

Author:

Villegas-Ch WilliamORCID,Palacios-Pacheco Xavier,Luján-Mora SergioORCID

Abstract

Currently, the integration of technologies such as the Internet of Things and big data seeks to cover the needs of an increasingly demanding society that consumes more resources. The massification of these technologies fosters the transformation of cities into smart cities. Smart cities improve the comfort of people in areas such as security, mobility, energy consumption and so forth. However, this transformation requires a high investment in both socioeconomic and technical resources. To make the most of the resources, it is important to make prototypes capable of simulating urban environments and for the results to set the standard for implementation in real environments. The search for an environment that represents the socioeconomic organization of a city led us to consider universities as a perfect environment for small-scale testing. The proposal integrates these technologies in a traditional university campus, mainly through the acquisition of data through the Internet of Things, the centralization of data in proprietary infrastructure and the use of big data for the management and analysis of data. The mechanisms of distributed and multilevel analysis proposed here could be a powerful starting point to find a reliable and efficient solution for the implementation of an intelligent environment based on sustainability.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference85 articles.

1. The Weight of Cities Resource Requirements Of Future Urbanization https://europa.eu/capacity4dev/unep/documents/weight-cities-resource-requirements-future-urbanization

2. The Internet of Things: A survey

3. Natural Computing Applied to the Underground System: A Synergistic Approach for Smart Cities

4. What Smart Campuses Can Teach Us about Smart Cities: User Experiences and Open Data

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3