Highly Carbon-Resistant Y Doped NiO–ZrOm Catalysts for Dry Reforming of Methane

Author:

Wang Ye,Li Li,Wang Yannan,Da Costa Patrick,Hu Changwei

Abstract

Yttrium-doped NiO–ZrOm catalyst was found to be novel for carbon resistance in the CO2 reforming of methane. Yttrium-free and -doped NiO–ZrOm catalysts were prepared by a one-step urea hydrolysis method and characterized by Brunauer-Emmett-Teller (BET), TPR-H2, CO2-TPD, XRD, TEM and XPS. Yttrium-doped NiO–ZrOm catalyst resulted in higher interaction between Ni and ZrOm, higher distribution of weak and medium basic sites, and smaller Ni crystallite size, as compared to the Y-free NiO–ZrOm catalyst after reaction. The DRM catalytic tests were conducted at 700 °C for 8 h, leading to a significant decrease of activity and selectivity for the yttrium-doped NiO–ZrOm catalyst. The carbon deposition after the DRM reaction on yttrium-doped NiO–ZrOm catalyst was lower than on yttrium-free NiO–ZrOm catalyst, which indicated that yttrium could promote the inhibition of carbon deposition during the DRM process.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3