Catalytic Biomass Gasification in Supercritical Water and Product Gas Upgrading

Author:

Vadarlis Athanasios A.1ORCID,Angeli Sofia D.2,Lemonidou Angeliki A.34,Boukis Nikolaos1,Sauer Jörg1

Affiliation:

1. Karlsruhe Institute of Technology (KIT) Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany

2. Karlsruhe Institute of Technology (KIT) Institute for Chemical Technology and Polymer Chemistry (ITCP) Engesserstr. 18/20 76131 Karlsruhe Germany

3. Aristotle University of Thessaloniki (AUTH) Department of Chemical Engineering University Campus 54124 Thessaloniki Greece

4. Chemical Process Engineering Research Institute (CERTH/CPERI) P.O. Box 6036, Thermi 57001 Thessaloniki Greece

Abstract

AbstractThe gasification of biomass with supercritical water, also known as SCWG, is a sustainable method of hydrogen production. The process produces a mixture of hydrogen, carbon oxides, and hydrocarbons. Upgrading this mixture through steam or dry reforming of hydrocarbons to create synthesis gas and then extra hydrogen is a viable way to increase hydrogen production from biomass. This literature review discusses combining these two processes and recent experimental work on catalytic SCWG of biomass and its model compounds and steam/dry reforming of produced hydrocarbons. It focuses on catalysts used in these processes and their key criteria, such as activity, selectivity towards hydrogen and methane, and ability to inhibit carbon formation and deposition. A new criterion is proposed to evaluate catalyst performance in biomass SCWG and the need for further upgrading via reforming, based on the ratio of hydrogen bound in hydrocarbons to total hydrogen produced during SCWG. The review concludes that most catalysts used in biomass SCWG trap a large proportion of hydrogen in hydrocarbons, necessitating further processing of the product stream.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Filtration and Separation,Process Chemistry and Technology,Biochemistry,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3