An Improved Dempster–Shafer Evidence Theory with Symmetric Compression and Application in Ship Probability

Author:

Fang Ning1,Cui Junmeng1

Affiliation:

1. School of Electronic and Information Engineering, Beihang University, Beijing 100191, China

Abstract

Auxiliary information sources, a subset of target recognition data sources, play a significant role in target recognition. The reliability and importance of these sources can vary, thereby affecting the effectiveness of the data provided. Consequently, it is essential to integrate these auxiliary information sources prior to their utilization for identification. The Dempster-Shafer (DS) evidence theory, a well-established data-fusion method, offers distinct advantages in handling and combining uncertain information. In cases where conflicting evidence sources and minimal disparities in fundamental probability allocation are present, the implementation of DS evidence theory may demonstrate deficiencies. To address these concerns, this study refined DS evidence theory by introducing the notion of invalid evidence sources and determining the similarity weight of evidence sources through the Pearson correlation coefficient, reflecting the credibility of the evidence. The significance of evidence is characterized by entropy weights, taking into account the uncertainty of the evidence source. The proposed asymptotic adjustment compression function adjusts the basic probability allocation of evidence sources using comprehensive weights, leading to symmetric compression and control of the influence of evidence sources in data fusion. The simulation results and their application in ship target recognition demonstrate that the proposed method successfully incorporates basic probability allocation calculations for ship targets in various environments. In addition, the method effectively integrates data from multiple auxiliary information sources to produce accurate fusion results within an acceptable margin of error, thus validating its efficacy. The superiority of the proposed method is proved by comparing it with other methods that use the calculated weights to weight the basic probability allocation of the evidence sources.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3