Abstract
Target recognition in synthetic aperture radar (SAR) imagery suffers from speckle noise and geometric distortion brought by the range-based coherent imaging mechanism. A new SAR target recognition system is proposed, using a SAR-to-optical translation network as pre-processing to enhance both automatic and manual target recognition. In the system, SAR images of targets are translated into optical by a modified conditional generative adversarial network (cGAN) whose generator with a symmetric architecture and inhomogeneous convolution kernels is designed to reduce the background clutter and edge blur of the output. After the translation, a typical convolutional neural network (CNN) classifier is exploited to recognize the target types in translated optical images automatically. For training and testing the system, a new multi-view SAR-optical dataset of aircraft targets is created. Evaluations of the translation results based on human vision and image quality assessment (IQA) methods verify the improvement of image interpretability and quality, and translated images obtain higher average accuracy than original SAR data in manual and CNN classification experiments. The good expansibility and robustness of the system shown in extending experiments indicate the promising potential for practical applications of SAR target recognition.
Funder
National Key R&D Program of China grant number
Subject
General Earth and Planetary Sciences
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献