Cutting-Edge Machine Learning Techniques for Accurate Prediction of Agglomeration Size in Water–Alumina Nanofluids

Author:

Vaferi Behzad1ORCID,Dehbashi Mohsen2,Alibak Ali Hosin3

Affiliation:

1. Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz 7198774731, Iran

2. Institute of Physics, Center for Science and Education, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland

3. Department of Petroleum Engineering, Faculty of Engineering, Soran University, Soran 44008, Kurdistan Region, Iraq

Abstract

Nanoparticle agglomeration is one of the most problematic phenomena during nanofluid synthesis by a two-step procedure. Understanding and accurately estimating agglomeration size is crucial, as it significantly affects nanofluids’ properties, behavior, and successful applications. To the best of our knowledge, the literature has not yet applied machine learning methods to estimate alumina agglomeration size in water-based nanofluids. So, this research employs a range of machine learning models—Random Forest, Adaptive Boosting, Extra Trees, Categorical Boosting, and Multilayer Perceptron Neural Networks—to predict alumina agglomeration sizes in water-based nanofluids. To this end, a comprehensive experimental database, including 345 alumina agglomeration sizes in water-based nanofluids, compiled from 29 various sources from the literature, is utilized to train these models and monitor their generalization ability in the testing stage. The models estimate agglomeration size based on multiple factors: alumina concentration, ultrasonic time, power, frequency, temperature, surfactant type and concentration, and pH levels. The relevancy test based on the Pearson method clarifies that Al2O3 agglomeration size in water primarily depends on ultrasonic frequency, ultrasonic power, alumina concentration in water, and surfactant concentration. Comparative analyses based on numerical and graphical techniques reveal that the Categorical Boosting model surpasses others in accurately simulating this complex phenomenon. It effectively captures the intricate relationships between key features and alumina agglomeration size, achieving an average absolute relative deviation of 6.75%, a relative absolute error of 12.83%, and a correlation coefficient of 0.9762. Furthermore, applying the leverage method to the experimental data helps identify two problematic measurements within the database. These results validate the effectiveness of the Categorical Boosting model and contribute to the broader goal of enhancing our understanding and control of nanofluid properties, thereby aiding in improving their practical applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3