Abstract
Hydrogels are hydrophilic polymer materials that can swell but are insoluble in water. Hydrogels can be synthesized with synthetic or natural polymers, but natural polymers are preferred because they are similar to natural tissues, which can absorb a high water content, are biocompatible, and are biodegradable. The three-dimensional structure of the hydrogel affects its water insolubility and ability to maintain its shape. Cellulose hydrogels are preferred over other polymers because they are highly biocompatible, easily accessible, and affordable. Carboxymethyl cellulose sodium (CMCNa) is an example of a water-soluble cellulose derivative that can be synthesized using natural materials. A crosslinking agent is used to strengthen the properties of the hydrogel. Chemical crosslinking agent is used more often than physical crosslinking agent. In this review, article, different types of crosslinking agents are discussed based on synthetic and natural crosslinking agents. Hydrogels that utilize synthetic crosslinking agent have advantages, such as adjustable mechanical properties and easy control of the chemical composition. However, hydrogels that use natural crosslinking agent have better biocompatibility and less latent toxic effect.
Funder
Universitas Sumatera Utara through World Class University Program 2021
Subject
Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献