Optimization of Non-Newtonian Flow through a Coat-Hanger Die Using the Adjoint Method

Author:

Igali Dastan1,Clifford Omonini1ORCID,Perveen Asma1ORCID,Zhang Dichuan2ORCID,Wei Dongming3ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Avenue 53, Astana 010000, Kazakhstan

2. Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Avenue 53, Astana 010000, Kazakhstan

3. Department of Mathematics, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Avenue 53, Astana 010000, Kazakhstan

Abstract

The use of coat-hanger dies is prevalent in the plastic film and sheet extrusion industry. The product quality and the power of the extrusion machine depend on the uniformities of the fluid velocity at the exit and the pressure drop. Die manufacturers face the challenge of producing coat-hanger dies that can extrude materials uniformly and with a minimal pressure drop. Previous studies have analyzed the die outlet’s flow homogeneity and pressure drop using various numerical simulations. However, the combination of the scheme programming language together with the Adjoint Method of Optimization has yet to be attempted. The adjoint optimization method has been demonstrated to be beneficial in addressing issues related to shape optimization problems and it may also be beneficial in optimizing the design of dies used in polymer melt extrusion. In this study, the proposed innovations involve incorporating both the Scheme programming language and Adjoint solver to examine and optimize the coat hanger’s flow homogeneity and pressure drop. Before optimization, the outlet velocity was almost 10 times higher at the die center than at the edges but after optimization, it became more uniform. The proposed optimized coat-hanger die geometry results in more uniform melt flow as demonstrated by the velocity contour plot and the outlet velocity graph in the die slit area, reducing the deviation value from 0.097 to 0.015. Additionally, the mass flux variance across the die outlet decreased by 71.6% from 0.015069 kg m−2 s−1 to 0.004281 kg m−2 s−1. Therefore, using this method reduces the amount of time wasted on trial and error or other optimization techniques that may be limited by design constraints.

Funder

Nazarbayev University

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3