Abstract
A coupled surface response optimization method with a three-dimensional finite volume method is adopted in this study to identify five independent geometric variables of the die interior that provides a design with the lowest velocity variance at the exit of the coat-hanger extrusion die. Two of these five geometric variables represent the manifold dimension while the other three variables represent the die profile. In this method, B-spline fitting with four points was used to represent the die profile. A comparison of the optimized die obtained in our study and the die with a geometry derived by a previous theoretical work shows a 20.07% improvement in the velocity distribution at the exit of the die.
Funder
Ministry of Education and Science of the Republic of Kazakhstan
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献