Genome-Wide Analysis of the LATERAL ORGAN BOUNDARIES Domain (LBD) Members in Alfalfa and the Involvement of MsLBD48 in Nitrogen Assimilation

Author:

Jiang Xu1,Cui Huiting2,Wang Zhen3ORCID,Kang Junmei3,Yang Qingchuan13,Guo Changhong1

Affiliation:

1. College of Life Science and Technology, Harbin Normal University, Harbin 150025, China

2. College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China

3. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China

Abstract

The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) proteins, a transcription factor family specific to the land plants, have been implicated in multiple biological processes including organ development, pathogen response and the uptake of inorganic nitrogen. The study focused on LBDs in legume forage Alfalfa. The genome-wide analysis revealed that in Alfalfa 178 loci across 31 allelic chromosomes encoded 48 unique LBDs (MsLBDs), and the genome of its diploid progenitor M. sativa spp. Caerulea encoded 46 LBDs. Synteny analysis indicated that the expansion of AlfalfaLBDs was attributed to the whole genome duplication event. The MsLBDs were divided into two major phylogenetic classes, and the LOB domain of the Class I members was highly conserved relative to that of the Class II. The transcriptomic data demonstrated that 87.5% of MsLBDs were expressed in at least one of the six test tissues, and Class II members were preferentially expressed in nodules. Moreover, the expression of Class II LBDs in roots was upregulated by the treatment of inorganic nitrogen such as KNO3 and NH4Cl (0.3 mM). The overexpression of MsLBD48, a Class II member, in Arabidopsis resulted in growth retardance with significantly declined biomass compared with the non-transgenic plants, and the transcription level of the genes involved in nitrogen uptake or assimilation, including NRT1.1, NRT2.1, NIA1 and NIA2 was repressed. Therefore, the LBDs in Alfalfa are highly conserved with their orthologs in embryophytes. Our observations that ectopic expression of MsLBD48 inhibited Arabidopsis growth by repressing nitrogen adaption suggest the negative role of the transcription factor in plant uptake of inorganic nitrogen. The findings imply the potential application of MsLBD48 in Alfalfa yield improvement via gene editing.

Funder

Agricultural Science and Technology Innovation Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3