Transcriptomic Analysis of Alfalfa Flowering and the Dual Roles of MsAP1 in Floral Organ Identity and Flowering Time

Author:

Jiang Xu1ORCID,Cui Huiting2,Wang Zhen3ORCID,Long Ruicai1,Yang Qingchuan1,Kang Junmei1

Affiliation:

1. Institute of Animal Science Chinese Academe of Agricultural Science, Beijing 100193, China

2. Henan Institute of Science and Technology, School of Agriculture, Xinxiang 453003, China

3. Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA

Abstract

Flowering, the transition from the vegetative to the reproductive stage, is vital for reproductive success, affecting forage quality, the yield of aboveground biomass, and seed production in alfalfa. To explore the transcriptomic profile of alfalfa flowering transition, we compared gene expression between shoot apices (SAs) at the vegetative stage and flower buds (FBs) at the reproductive stage by mRNA sequencing. A total of 3,409 DEGs were identified, and based on gene ontology (GO), 42.53% of the most enriched 15 processes were associated with plant reproduction, including growth phase transition and floral organ development. For the former category, 79.1% of DEGs showed higher expression levels in SA than FB, suggesting they were sequentially turned on and off at the two test stages. For the DEGs encoding the components of circadian rhythm, sugar metabolism, phytohormone signaling, and floral organ identity genes, 60.71% showed higher abundance in FB than SA. Among them, MsAP1, an APETALA1 (AP1) homolog of Arabidopsis thaliana, showed high expression in flower buds and co-expressed with genes related to flower organ development. Moreover, ectopic expression of MsAP1 in Arabidopsis resulted in dwarfism and early flowering under long-day conditions. The MsAP1-overexpression plant displayed morphological abnormalities including fused whorls, enlarged pistils, determinate inflorescence, and small pods. In addition, MsAP1 is localized in the nucleus and exhibits significant transcriptional activity. These findings revealed a transcriptional regulation network of alfalfa transition from juvenile phase to flowering and provided genetic evidence of the dual role of MsAP1 in flowering and floral organ development.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3