Dominant Factors Affecting Rheological Properties of Cellulose Derivatives Forming Thermotropic Cholesteric Liquid Crystals with Visible Reflection

Author:

Ogiwara Yuki1,Iwata Naoto1ORCID,Furumi Seiichi1ORCID

Affiliation:

1. Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan

Abstract

Hydroxypropyl cellulose (HPC) derivatives with alkanoyl side chains are known to form thermotropic cholesteric liquid crystals (CLCs) with visible reflection. Although the widely investigated CLCs are requisite for tedious syntheses of chiral and mesogenic compounds from precious petroleum resources, the HPC derivatives easily prepared from biomass resources would contribute to the realization of environment-friendly CLC devices. In this study, we report the linear rheological behavior of thermotropic CLCs of HPC derivatives possessing alkanoyl side chains of different lengths. In addition, the HPC derivatives have been synthesized by the complete esterification of hydroxy groups in HPC. The master curves of these HPC derivatives were almost identical at reference temperatures, with their light reflection at 405 nm. The relaxation peaks appeared at an angular frequency of ~102 rad/s, suggesting the motion of the CLC helical axis. Moreover, the dominant factors affecting the rheological properties of HPC derivatives were strongly dependent on the CLC helical structures. Further, this study provides one of the most promising fabrication strategies for the highly oriented CLC helix by shearing force, which is indispensable to the development of advanced photonic devices with eco-friendliness.

Funder

JSPS Grant-in-Aid for Scientific Research

NEXCO Group Companies’ Support Fund for Disaster Prevention Measures on Expressways

Precise Measurement Technology Promotion Foundation

Descente and Ishimoto Memorial Foundation for the Promotion of Sports Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3