Cholesteric Liquid Crystals with Thermally Stable Reflection Color from Mixtures of Completely Etherified Ethyl Cellulose Derivative and Methacrylic Acid

Author:

Matsumoto Kazuma1,Iwata Naoto1ORCID,Furumi Seiichi1ORCID

Affiliation:

1. Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan

Abstract

Cellulose derivatives have attracted attention as environmentally friendly materials that can exhibit a cholesteric liquid crystal (CLC) phase with visible light reflection. Previous reports have shown that the chemical structures and the degrees of substitution of cellulose derivatives have significant influence on their reflection properties. Although many studies have been reported on CLC using ethyl cellulose (EC) derivatives in which the hydroxy groups are esterified, there have been no studies on EC derivatives with etherified side chains. In this article, we optimized the Williamson ether synthesis to introduce pentyl ether groups in the EC side chain. The degree of substitution with pentyl ether group (DSPe), confirmed via 1H-NMR spectroscopic measurements, was controlled using the solvent and the base concentration in this synthesis. All the etherified EC derivatives were soluble in methacrylic acid (MAA), allowing for the preparation of lyotropic CLCs with visible reflection. Although the reflection peak of lyotropic CLCs generally varies with temperature, the reflection peak of lyotropic CLCs of completely etherified EC derivatives with MAA could almost be preserved in the temperature range from 30 to 110 °C even without the aid of any crosslinking. Such thermal stability of the reflection peak of CLCs may be greatly advantageous for fabricating new photonic devices with eco-friendliness.

Funder

JSPS Grant-in-Aid for Scientific Research

Sugar Industry Public Association

Descente and Ishimoto Memorial Foundation for the Promotion of Sports Science

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3