Prognostic Value of EMT Gene Signature in Malignant Mesothelioma

Author:

Wu Licun1ORCID,Yoshihara Kosuke23ORCID,Yun Hana1,Karim Saraf1,Shokri Nastaran1,Zaeimi Fatemeh1,Man H. S. Jeffrey14,Zia Amin15,Felley-Bosco Emanuela6ORCID,de Perrot Marc147ORCID

Affiliation:

1. Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, Princess Margaret Cancer Research Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada

2. Institute for Research Promotion, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan

3. Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

4. Department of Immunology, University of Toronto, Toronto, ON M5S 2E8, Canada

5. Dycode Bio, Co., Toronto, ON L6C 2R9, Canada

6. Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, 8091 Zurich, Switzerland

7. Institute of Medical Science, University of Toronto, Toronto, ON M5G 2C4, Canada

Abstract

Malignant mesothelioma (MESO) consists of epithelioid, biphasic, and sarcomatoid subtypes with different epithelial–mesenchymal transition (EMT) phenotypes. We previously identified a panel of four MESO EMT genes correlating with an immunosuppressive tumor microenvironment and poor survival. In this study, we investigated the correlation between these MESO EMT genes, the immune profile, and the genomic and epigenomic alterations to identify potential therapeutic targets to prevent or reverse the EMT process. Using multiomic analysis, we observed that the MESO EMT genes were positively correlated with hypermethylation of epigenetic genes and loss of CDKN2A/B expression. MESO EMT genes such as COL5A2, ITGAV, SERPINH1, CALD1, SPARC, and ACTA2 were associated with upregulation of TGF-β signaling, hedgehog signaling, and IL-2-STAT5 signaling and downregulation of the IFN-α and IFN-γ response. Immune checkpoints such as CTLA4, CD274 (PD-L1), PDCD1LG2 (PD-L2), PDCD1 (PD-1), and TIGIT were upregulated, while LAG3, LGALS9, and VTCN1 were downregulated with the expression of MESO EMT genes. CD160, KIR2DL1, and KIR2DL3 were also broadly downregulated with the expression of MESO EMT genes. In conclusion, we observed that the expression of a panel of MESO EMT genes was associated with hypermethylation of epigenetic genes and loss of expression of CDKN2A and CDKN2B. Expression of MESO EMT genes was associated with downregulation of the type I and type II IFN response, loss of cytotoxicity and NK cell activity, and upregulation of specific immune checkpoints, as well as upregulation of the TGF-β1/TGFBR1 pathway.

Funder

Princess Margaret Cancer Research Foundation

University Health Network, Toronto, Canada

Canadian Mesothelioma Research Foundation, Canada

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3