High-Molecular-Weight Exopolysaccharides Production from Tuber borchii Cultivated by Submerged Fermentation

Author:

Chen Cheng-Chun1ORCID,Nargotra Parushi2,Kuo Chia-Hung23ORCID,Liu Yung-Chuan1ORCID

Affiliation:

1. Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan

2. Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan

3. Center for Aquatic Products Inspection Service, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan

Abstract

Truffles are known worldwide for their peculiar taste, aroma, and nutritious properties, which increase their economic value. However, due to the challenges associated with the natural cultivation of truffles, including cost and time, submerged fermentation has turned out to be a potential alternative. Therefore, in the current study, the cultivation of Tuber borchii in submerged fermentation was executed to enhance the production of mycelial biomass, exopolysaccharides (EPSs), and intracellular polysaccharides (IPSs). The mycelial growth and EPS and IPS production was greatly impacted by the choice and concentration of the screened carbon and nitrogen sources. The results showed that sucrose (80 g/L) and yeast extract (20 g/L) yielded maximum mycelial biomass (5.38 ± 0.01 g/L), EPS (0.70 ± 0.02 g/L), and IPS (1.76 ± 0.01 g/L). The time course analysis of truffle growth revealed that the highest growth and EPS and IPS production was observed on the 28th day of the submerged fermentation. Molecular weight analysis performed by the gel permeation chromatography method revealed a high proportion of high-molecular-weight EPS when 20 g/L yeast extract was used as media and the NaOH extraction step was carried out. Moreover, structural analysis of the EPS using Fourier-transform infrared spectroscopy (FTIR) confirmed that the EPS was β-(1–3)-glucan, which is known for its biomedical properties, including anti-cancer and anti-microbial activities. To the best of our knowledge, this study represents the first FTIR analysis for the structural characterization of β-(1–3)-glucan (EPS) produced from Tuber borchii grown in submerged fermentation.

Funder

National Science and Technology Council of Taiwan, R.O.C.

Ministry of Education, Taiwan, R.O.C.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3