Deep Learning Based Early Detection Framework for Preliminary Diagnosis of COVID-19 via Onboard Smartphone Sensors

Author:

Khaloufi HayatORCID,Abouelmehdi Karim,Beni-Hssane Abderrahim,Rustam FurqanORCID,Jurcut Anca DeliaORCID,Lee ErnestoORCID,Ashraf ImranORCID

Abstract

The COVID-19 pandemic has affected almost every country causing devastating economic and social disruption and stretching healthcare systems to the limit. Furthermore, while being the current gold standard, existing test methods including NAAT (Nucleic Acid Amplification Tests), clinical analysis of chest CT (Computer Tomography) scan images, and blood test results, require in-person visits to a hospital which is not an adequate way to control such a highly contagious pandemic. Therefore, top priority must be given, among other things, to enlisting recent and adequate technologies to reduce the adverse impact of this pandemic. Modern smartphones possess a rich variety of embedded MEMS (Micro-Electro-Mechanical-Systems) sensors capable of recording movements, temperature, audio, and video of their carriers. This study leverages the smartphone sensors for the preliminary diagnosis of COVID-19. Deep learning, an important breakthrough in the domain of artificial intelligence in the past decade, has huge potential for extracting apt and appropriate features in healthcare. Motivated from these facts, this paper presents a new framework that leverages advanced machine learning and data analytics techniques for the early detection of coronavirus disease using smartphone embedded sensors. The proposal provides a simple to use and quickly deployable screening tool that can be easily configured with a smartphone. Experimental results indicate that the model can detect positive cases with an overall accuracy of 79% using only the data from the smartphone sensors. This means that the patient can either be isolated or treated immediately to prevent further spread, thereby saving more lives. The proposed approach does not involve any medical tests and is a cost-effective solution that provides robust results.

Funder

Florida Center for Advanced Analytics and Data Science funded by Ernesto.Net

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3