A Meta Modeling-Based Interoperability and Integration Testing Platform for IoT Systems

Author:

Shah Qasim Ali1,Shafi Imran1,Ahmad Jamil2,Alfarhood Sultan3ORCID,Safran Mejdl3ORCID,Ashraf Imran4ORCID

Affiliation:

1. College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan

2. Department of Computing, Abasyn University, Islamabad Campus, Islamabad 44000, Pakistan

3. Department of Computer Science, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia

4. Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Abstract

The rapid growth of the Internet of Things (IoT) and its integration into various industries has made it extremely challenging to guarantee IoT systems’ dependability and quality, including scalability, dynamicity, and integration with existing IoT frameworks. However, the essential principles, approaches, and advantages of model-driven IoT testing indicate a promising strategy for overcoming these. This paper proposes a metamodeling-based interoperability and integration testing approach for IoT systems that automates the creation of test cases and the assessment of system performance by utilizing formal models to reflect the behavior and interactions of IoT systems. The proposed model-based testing enables the systematic verification and validation of complex IoT systems by capturing the essential characteristics of IoT devices, networks, and interactions. This study describes the key elements of model-driven IoT testing, including the development of formal models, methods for generating test cases, and the execution and assessment of models. In addition, it examines various modeling formalisms and their use in IoT testing, including state-based, event-driven, and hybrid models. This study examines several methods for creating test cases to ensure thorough and effective testing, such as constraint-based strategies and model coverage requirements. Model-driven IoT testing improves defect detection, expands test coverage, decreases testing effort, and increases system reliability. It also offers an organized and automated method to confirm the efficiency and dependability of IoT systems.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3