Estimation of Carbon Content in High-Ash Coal Using Mid-Infrared Fourier-Transform Infrared Spectroscopy

Author:

Mishra Sameeksha1ORCID,Prasad Anup Krishna1ORCID,Shukla Anubhav12ORCID,Vinod Arya1ORCID,Preety Kumari1,Varma Atul Kumar2ORCID

Affiliation:

1. Photogeology and Image Processing Laboratory, Department of Applied Geology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India

2. Coal Geology and Organic Petrology Laboratory, Department of Applied Geology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India

Abstract

The carbon content of different types of coal determines its utility in industries and thermal power generation. The most popular and widely used is the conventional method (ultimate analysis) to determine coal’s carbon content (C, wt.%), along with H, N, and S. In the present study, the authors attempted to analyze the carbon content (C in %) in coals via data from Fourier-transform infrared (FTIR) spectroscopy, which can be a promising alternative. As a reference, the carbon content in the coal samples, referred to as CCHNS (in wt.%), was determined from the ultimate analysis. The mid-infrared FTIR spectroscopic data were used to investigate the response of functional groups associated with carbon or its compounds, which were used to model and estimate the carbon content in coal samples (referred to as CFTIR, in wt.%). FTIR spectral signatures were utilized in specific zones (between wavenumbers 4000 and 400 cm−1) from a total of 18 coal samples from the Johilla coalfield, Umaria district, Madhya Pradesh, India. These 18 coal samples were used to produce 126 Coal+KBr pellets (at seven known dilution factors for each coal sample), and the spectral response (absorbance) from each pellet was recorded. For model development and validation, the training set and test set were formed using a 17:1 split (K-fold cross validation). The carbon content in the coal samples was modeled using the training set data by applying the piecewise linear regression method employing quasi-Newton (QN) with a breakpoint and least squares loss function. The model was validated using an independent test set. A pairwise comparison of estimates of carbon in the laboratory from the CHNS analyzer (CCHNS) and modeled carbon from FTIR data (CFTIR) exhibited a good correlation, relatively low error, and bias (coefficient of determination (R2) up to 0.93, RMSE of 23.71%, and MBE of −0.52%). Further, the significance tests for the mean and variance using the two-tailed t-test and F-test showed that no significant difference occurred between the pair of observed CCHNS and the model’s estimated CFTIR. For high-ash coals from the Johilla coalfield, the model presented here using mid-infrared FTIR spectroscopy data performs well. Thus, FTIR can potentially serve as an important method for quickly determining the carbon content of high-ash coals from various basins and can potentially be extended to soil and shale samples.

Funder

DST, New Delhi

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3