Parameterization of Multi-Angle Shaker Based on PSO-BP Neural Network

Author:

Zhang Jinxia12,Wang Yan1,Niu Fusheng12,Zhang Hongmei1,Li Songyi3,Wang Yanpeng3

Affiliation:

1. College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China

2. Collaborative Innovation Center of Green Development and Ecological Restoration of Mineral Resources, Tangshan 063210, China

3. Tangshan Land Sky Tech Co., Ltd., Tangshan 063020, China

Abstract

It was possible to conduct a study on the shape and parameterization of the vibrating screen so as to explore the relationship between detailed vibrating screen motion parameters and particle group distribution under different screen surface states. The motion characteristics of particle groups in various scenes were investigated, screening performance of vibrating screen with complex parameters was studied, interaction between motion parameters of screen surface and motion of material groups in multi-component mixed particle groups was analyzed, segregation distribution law of multi-component mixed material groups was revealed, and this study presents simulation findings based on the discrete element program EDEM. The ensemble learning approach was used to examine the optimized model screen. It was revealed that the screen’s amplitude, vibration frequency, vibration direction angle, swing frequency, swing angle, and change rate of screen surface inclination all had a major impact on its performance. As a result, the vibrating screen’s running state was described by various parameter combinations, and the trend changes of several factors that affected the performance of the screen were examined. The investigation revealed that the particle swarm optimization backpropagation (PSO-BP) neural network model outperformed the backpropagation (BP) neural network model alone in terms of prediction. It had lower root mean square error (RMSE), mean square relative error (MSRE), mean absolute error (MAE), and mean absolute relative error (MARE) than the BP neural network model, but a larger R2. This model’s greatest absolute error was 0.0772, and its maximum relative error was 0.0241. The regression coefficient R value of 0.9859, which displayed the model’s strong performance and high prediction accuracy, showed that the PSO-BP model was feasible and helpful for parameter optimization design of vibrating screens.

Funder

Central Guiding Local Science and Technology Development Fund Projects

Scientific and Technological Research Projects in Colleges and Universities in Hebei Province

Tangshan Science and Technology Plan Project

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3