Water–Rock Interactions Driving Groundwater Composition in the Pra Basin (Ghana) Identified by Combinatorial Inverse Geochemical Modelling

Author:

Manu Evans12ORCID,De Lucia Marco1ORCID,Kühn Michael12ORCID

Affiliation:

1. GFZ German Research Centre for Geosciences, Fluid Systems Modelling, Telegrafenberg, 14473 Potsdam, Germany

2. Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany

Abstract

The crystalline basement aquifer of the Pra Basin in Ghana is essential to the water supply systems of the region. This region is experiencing the ongoing pollution of major river networks from illegal mining activities. Water management is difficult due to the limited knowledge of hydrochemical controls on the groundwater. This study investigates its evolution based on analyses from a previous groundwater sampling campaign and mineralogical investigation of outcrops. The dominant reactions driving the average groundwater composition were identified by means of a combinatorial inverse modelling approach under the hypothesis of local thermodynamical equilibrium. The weathering of silicate minerals, including albite, anorthite, plagioclase, K-feldspar, and chalcedony, explains the observed median groundwater composition in the transition and discharge zones. Additional site-specific hypotheses were needed to match the observed composition of the main recharge area, including equilibration with carbon dioxide, kaolinite, and hematite in the soil and unsaturated zones, respectively, and the degradation of organic matter controlling the sulfate/sulfide content, thus pointing towards kinetic effects during water–rock interactions in this zone. Even though an averaged water composition was used, the inverse models can “bridge” the knowledge gap on the large basin scale to come up with quite distinct “best” mineral assemblages that explain observed field conditions. This study provides a conceptual framework of the hydrogeochemical evolution for managing groundwater resources in the Pra Basin and presents modelling techniques that can be applied to similar regions with comparable levels of heterogeneity in water chemistry and limited knowledge of aquifer mineralogy. The combinatorial inverse model approach offers enhanced flexibility by systematically generating all plausible combinations of mineral assemblages from a given pool of mineral phases, thereby allowing for a comprehensive exploration of the reactions driving the chemical evolution of the groundwater.

Funder

“Open Access Publikationskosten” Deutsche Forschungsgemeinschaft

German Academic Exchange Service

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3