Stable Isotopes and Water Level Monitoring Integrated to Characterize Groundwater Recharge in the Pra Basin, Ghana

Author:

Manu Evans12ORCID,De Lucia Marco1ORCID,Akiti Thomas Tetteh3,Kühn Michael12ORCID

Affiliation:

1. GFZ German Research Centre for Geosciences, Fluid Systems Modelling, Telegrafenberg, 14473 Potsdam, Germany

2. Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany

3. Department of Nuclear Science and Applications, Graduate School of Nuclear and Allied Sciences, University of Ghana Legon, Accra P.O. Box AE 1, Ghana

Abstract

In the Pra Basin of Ghana, groundwater is increasingly becoming the alternative water supply due to the continual pollution of surface water resources through illegal mining and indiscriminate waste discharges into rivers. However, our understanding of hydrogeology and the dynamics of groundwater quality remains inadequate, posing challenges for sustainable water resource management. This study aims to characterize groundwater recharge by determining its origin and mechanism of recharge prior to entering the saturated zone and to provide spatial estimates of groundwater recharge using stable isotopes and water level measurements relevant to groundwater management in the basin. Ninety (90) water samples (surface water and groundwater) were collected to determine stable isotope ratios of oxygen (δ18O) and hydrogen (δ2H) and chloride concentration. In addition, ten boreholes were installed with automatic divers to collect time series data on groundwater levels for the 2022 water year. The Chloride Mass Balance (CMB) and the Water Table Fluctuation (WTF) methods were employed to estimate the total amount and spatial distribution of groundwater recharge for the basin. Analysis of the stable isotope data shows that the surface water samples in the Pra Basin have oxygen (δ18O) and hydrogen (δ2H) isotope ratios ranging from −2.8 to 2.2‰ vrs V-SMOW for δ18O and from −9.4 to 12.8‰ vrs V-SMOW for δ2H, with a mean of −0.9‰ vrs V-SMOW and 0.5‰ vrs V-SMOW, respectively. Measures in groundwater ranges from −3.0 to −1.5‰ vrs V-SMOW for δ18O and from −10.4 to −2.4‰ vrs V-SMOW for δ2H, with a mean of −2.3 and −7.0‰ vrs V-SMOW, respectively. The water in the Pra Basin originates from meteoric source. Groundwater has a relatively depleted isotopic signature compared to surface water due to the short residence time of infiltration within the extinction depth of evaporation in the vadose zone. Estimated evaporative losses in the catchment range from 51 to 77%, with a mean of 62% for surface water and from 55 to 61% with a mean of 57% for groundwater, respectively. Analysis of the stable isotope data and water level measurements suggests a potential hydraulic connection between surface water and groundwater. This hypothesis is supported by the fact that the isotopes of groundwater have comparatively lower values than surface water. Furthermore, the observation that the groundwater level remains constant in months with lower rainfall further supports this conclusion. The estimated annual groundwater recharge in the catchment ranges from 9 to 667 mm (average 165 mm) and accounts for 0.6% to 33.5% (average 10.7%) of mean annual precipitation. The total estimated mean recharge for the study catchment is 228 M m3, higher than the estimated total surface water use for the entire Pra Basin of 144 M m3 for 2010, indicating vast groundwater potential. Overall, our study provides a novel insight into the recharge mechanism and spatial quantification of groundwater recharge, which can be used to constrain groundwater flow and hydrogeochemical evolution models, which are crucial for effective groundwater management within the framework of the Pra Basin’s Integrated Water Resources Management Plan.

Funder

funding programme “Open Access Publikationskosten” Deutsche Forschungsgemeinschaft

German Academic Exchange Service

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3