Finite Element Simulation of Multiple Slip Effects on MHD Unsteady Maxwell Nanofluid Flow over a Permeable Stretching Sheet with Radiation and Thermo-Diffusion in the Presence of Chemical Reaction

Author:

Ali BaghORCID,Nie Yufeng,Khan Shahid AliORCID,Sadiq Muhammad Tariq,Tariq Momina

Abstract

The aim of the present study is to investigate the multiple slip effects on magnetohydrodynamic unsteady Maxwell nanofluid flow over a permeable stretching sheet with thermal radiation and thermo-diffusion in the presence of chemical reaction. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations with the aid of appropriate similarity variables, and the transformed equations are then solved numerically by using a variational finite element method. The effects of various physical parameters on the velocity, temperature, solutal concentration, and nanoparticle concentration profiles as well as on the skin friction coefficient, rate of heat transfer, and Sherwood number for solutal concentration are discussed by the aid of graphs and tables. An exact solution of flow velocity, skin friction coefficient, and Nusselt number is compared with the numerical solution obtained by FEM and also with numerical results available in the literature. A good agreement between the exact and numerical solution is observed. Also, to justify the convergence of the finite element numerical solution, the calculations are carried out by reducing the mesh size. The present investigation is relevant to high-temperature nanomaterial processing technology.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3