Bioconvection in Williamson hybrid nanofluid with thermal radiation, chemical reactions, and motile microorganisms on stretched surface

Author:

Nadeem Muhammad Safdar1ORCID,Riaz Samia1ORCID,Abid H. Sameera2ORCID,Ali Qasim3ORCID,Younas Usman4ORCID

Affiliation:

1. Department of Mathematics, University of Engineering and Technology, Lahore 54890, Pakistan

2. Department of Mathematics, University of Education, Lahore 54770, Pakistan

3. Department of Mathematics, University of Chakwal, Chakwal 48800, Pakistan

4. Department of Mathematics, Shanghai University, No. 99, Shangda Road, Shanghai 200444, China

Abstract

In this paper, we investigate the heat transfer characteristics of magnetohydrodynamics (MHD) with Williamson hybrid nanofluid (HNF), considering the influence of bioconvection as well as a chemical reaction on a stretched surface. We observe no investigation on bioconvection Williamson HNFs flow in the literature, which is a novel contribution to the literature. The recent study seeks to enhance the heat transfer rate by investigating inclined magnetic field, along with the interplay of bioconvection and chemical reactions. The employed hybrid nanoparticles consist of titanium dioxide (TiO2) and copper (Cu) suspended in base fluid (water). The governing partial differential equations (PDEs) are changed into nonlinear ordinary differential equations (ODEs) through an appropriate similarity transformation. These ODEs are subsequently analyzed employing the MATLAB bvp4c approach numerically. This study presents comprehensive insights into the behavior of distinct parameters, conveyed through phase portraits of temperature, velocity, nanoparticle concentration, as well as microorganism density profiles. The results showed that the momentum profile was inversely affected by increasing Williamson parameter, magnetic force, and inclination angle, while the temperature was boosted with advanced magnetic field, radiation parameter as well as Brownian motion parameter values.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3