Using High-Density LiDAR Data and 2D Streamflow Hydraulic Modeling to Improve Urban Flood Hazard Maps: A HEC-RAS Multi-Scenario Approach

Author:

Mihu-Pintilie AlinORCID,Cîmpianu Cătălin Ioan,Stoleriu Cristian Constantin,Pérez Martín Núñez,Paveluc Larisa Elena

Abstract

The ability to extract streamflow hydraulic settings using geoinformatic techniques, especially in high populated territories like urban and peri-urban areas, is an important aspect of any disaster management plan and flood mitigation effort. 1D and 2D hydraulic models, generated based on DEMs with high accuracy (e.g., Light Detection and Ranging (LiDAR)) and processed in geographic information systems (GIS) modeling software (e.g., HEC-RAS), can improve urban flood hazard maps. In this study, we present a small-scale conceptual approach using HEC-RAS multi-scenario methodology based on remote sensing (RS), LiDAR data, and 2D hydraulic modeling for the urban and peri-urban area of Bacău City (Bistriţa River, NE Romania). In order to test the flood mitigation capacity of Bacău 1 reservoir (rB1) and Bacău 2 reservoir (rB2), four 2D streamflow hydraulic scenarios (s1–s4) based on average discharge and calculated discharge (s1–s4) data for rB1 spillway gate (Sw1) and for its hydro-power plant (H-pp) were computed. Compared with the large-scale flood hazard data provided by regional authorities, the 2D HEC-RAS multi-scenario provided a more realistic perspective about the possible flood threats in the study area and has shown to be a valuable asset in the improvement process of the official flood hazard maps.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3