Variability of seasonal floods in the Upper Danube River basin

Author:

Jeneiová Katarína1,Kohnová Silvia1,Hall Julia2,Parajka Juraj2

Affiliation:

1. Slovak University of Technology in Bratislava, Faculty of Civil Engineering, Radlinského 11, 810 05 Bratislava, Slovakia .

2. Institute of Hydraulic Engineering and Water Resources Management, Vienna University of Technology, Karlsplatz 13/222, A-1040, Vienna, Austria .

Abstract

Abstract The objective of this study is to analyse the spatial variability of seasonal flood occurrences in the Upper Danube region for the period 1961-2010. The analysis focuses on the understanding of the factors that control the spatial variability of winter and summer floods in 88 basins with different physiographic conditions. The evaluation is based on circular statistics, which compare the changes in the mean date and in the seasonal flood concentration index within a year or predefined season. The results indicate that summer half-year and winter half-year floods are dominant in the Alps and northern Danube tributaries, respectively. A comparison of the relative magnitude of flood events indicates that summer half-year floods are on average more than 50% larger than floods in winter. The evaluation of flood occurrence showed that the values of seasonal flood concentration index (median 0.75) in comparison to the annual floods (median 0.58) shows higher temporal concentration of floods. The flood seasonality of winter events is dominant in the Alps; however, along the northern fringe (i.e. the Isar, Iller and Inn River) the timing of winter half-year floods is diverse. The seasonal concentration of summer floods tends to increase with increasing mean elevation of the basins. The occurrence of the three largest summer floods is more stable, i.e. they tend to occur around the same time for the majority of analysed basins. The results show that fixing the summer and winter seasons to specific months does not always allow a clear distinction of the main flood generation processes. Therefore, criteria to define flood typologies that are more robust are needed for regions such as the Upper Danube, with large climate and topographical variability between the lowland and high elevations, particularly for the assessment of the effect of increasing air temperature on snowmelt runoff and associated floods.

Publisher

Walter de Gruyter GmbH

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3