Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery

Author:

Fatigati FabioORCID,Vittorini Diego,Wang Yaxiong,Song Jian,Markides Christos N.ORCID,Cipollone RobertoORCID

Abstract

The applicability of organic Rankine cycle (ORC) technology to waste heat recovery (WHR) is currently experiencing growing interest and accelerated technological development. The utilization of low-to-medium grade thermal energy sources, especially in the presence of heat source intermittency in applications where the thermal source is characterized by highly variable thermodynamic conditions, requires a control strategy for off-design operation to achieve optimal ORC power-unit performance. This paper presents a validated comprehensive model for off-design analysis of an ORC power-unit, with R236fa as the working fluid, a gear pump, and a 1.5 kW sliding vane rotary expander (SVRE) for WHR from the exhaust gases of a light-duty internal combustion engine. Model validation is performed using data from an extensive experimental campaign on both the rotary equipment (pump, expander) and the remainder components of the plant, namely the heat recovery vapor generator (HRVH), condenser, reservoirs, and piping. Based on the validated computational platform, the benefits on the ORC plant net power output and efficiency of either a variable permeability expander or of sliding vane rotary pump optimization are assessed. The novelty introduced by this optimization strategy is that the evaluations are conducted by a numerical model, which reproduces the real features of the ORC plant. This approach ensures an analysis of the whole system both from a plant and cycle point of view, catching some real aspects that are otherwise undetectable. These optimization strategies are considered as a baseline ORC plant that suffers low expander efficiency (30%) and a large parasitic pumping power, with a backwork ratio (BWR) of up to 60%. It is found that the benefits on the expander power arising from a lower permeability combined with a lower energy demand by the pump (20% of BWR) for circulation of the working fluid allows a better recovery performance for the ORC plant with respect to the baseline case. Adopting the optimization strategies, the average efficiency and maximum generated power increase from 1.5% to 3.5% and from 400 to 1100 W, respectively. These performances are in accordance with the plant efficiencies found in the experimental works in the literature, which vary between 1.6% and 6.5% for similar applications. Nonetheless, there is still room for improvement regarding a proper design of rotary machines, which can be redesigned considering the indications resulting from the developed optimization analysis.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3