Economic Analysis of Gas Turbine Using to Increase Efficiency of the Organic Rankine Cycle

Author:

Matuszewska Dominika1ORCID

Affiliation:

1. Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Cracow, Poland

Abstract

In this research, a modified organic Rankine cycle (ORC) system has been presented and examined. This system incorporates a gas turbine as an additional subsystem to boost the enthalpy of geothermal brine. The primary objective of this study is to perform an economic evaluation of the modified ORC system, wherein a gas turbine is utilized to enhance the quality of geothermal steam. The suggested modified ORC system is particularly well-suited for areas abundant in geothermal resources with low to medium temperatures. It offers a more effective utilization of such resources, resulting in improved efficiency. The study considered 10 different working fluids and 8 types of gas turbines used to heat the geothermal water brine witch, the temperature vary of which varies between 80–130 °C. Various flue gas temperatures behind the heat exchanger, as well as temperatures of the return of the geothermal water to the injection hole, were examined. Based on that, 990 variations of configuration have been analyzed. The research showed that the lowest simple payback time (SPBT) values were achieved for the SGT-800 gas turbine and the working fluid R1336mzz(Z), for example, for an electricity price equal 200 USD/MWh and a natural gas price equal to 0.4 USD/hg, resulting in a SPBT value of 1.45 years. Additionally, for this variant, the dependence of SPBT on the price of electricity and the depth of the geothermal well was calculated; assuming the depth of the geothermal well is 2000 m, SPBT changes depending on the adopted gas prices and so for 150 USD/MWh it is 2.2 years, while at the price of 100 USD/MWh it is 5.5 years. It can be concluded that a decrease in SPBT is observed with an increase in the price of electricity and a decrease in the depth of the geothermal well. The findings of this study can help us to better understand the need to utilize low and medium temperature geothermal heat by using combined cycles (including gas turbines), also from an economic point of view.

Funder

Science and Higher Education, Poland

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3