Vibrational Spectroscopy as a Sensitive Probe for the Chemistry of Intra-Phase Bacterial Growth

Author:

Kochan KamilaORCID,Lai Elizabeth,Richardson Zack,Nethercott Cara,Peleg Anton Y.ORCID,Heraud Philip,Wood Bayden R.

Abstract

Bacterial growth in batch cultures occurs in four phases (lag, exponential/log, stationary and death phase) that differ distinctly in number of different bacteria, biochemistry and physiology. Knowledge regarding the growth phase and its kinetics is essential for bacterial research, especially in taxonomic identification and monitoring drug interactions. However, the conventional methods by which to assess microbial growth are based only on cell counting or optical density, without any insight into the biochemistry of cells or processes. Both Raman and Fourier transform infrared (FTIR) spectroscopy have shown potential to determine the chemical changes occurring between different bacterial growth phases. Here, we extend the application of spectroscopy and for the first time combine both Raman and FTIR microscopy in a multimodal approach to detect changes in the chemical compositions of bacteria within the same phase (intra-phase). We found a number of spectral markers associated with nucleic acids (IR: 964, 1082, 1215 cm−1; RS: 785, 1483 cm−1), carbohydrates (IR: 1035 cm−1; RS: 1047 cm−1) and proteins (1394 cm−1, amide II) reflecting not only inter-, but also intra-phase changes in bacterial chemistry. Principal component analysis performed simultaneously on FTIR and Raman spectra enabled a clear-cut, time-dependent discrimination between intra-lag phase bacteria probed every 30 min. This demonstrates the unique capability of multimodal vibrational spectroscopy to probe the chemistry of bacterial growth even at the intra-phase level, which is particularly important for the lag phase, where low bacterial numbers limit conventional analytical approaches.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3