Real-Time Integrated Energy Management Strategy Applied to Fuel Cell Hybrid Systems

Author:

Matignon Matthieu1ORCID,Azib Toufik1ORCID,Mcharek Mehdi1,Chaibet Ahmed2,Ceschia Adriano1

Affiliation:

1. ESTACA’LAB, S2ET Department, ESTACA Engineering School–Paris Saclay, 12 Avenue Paul Delouvrier, 78180 Montigny-le-Bretonneux, France

2. Laboratoire DRIVE Nevers, Université de Bourgogne, 58027 Nevers, France

Abstract

Integrating hydrogen fuel cell systems (FCS) remains challenging in the expanding electric vehicle market. One of the levers to meet this challenge is the relevance of energy supervisors. This paper proposes an innovative energy management strategy (EMS) based on the integrated EMS (iEMS) concept. It uses a nested approach combining the best of the three EMS categories (optimization-based (OBS), rules-based (RBS), and learning-based (LBS) strategies) to overcome the real-time operating condition limitations of the fuel cell hybrid electric vehicle (FCHEV). Through a fuel cell/battery hybrid architecture, the purpose is to improve hydrogen consumption and manage the battery state of charge (SOC) under real-time driving conditions. The proposed iEMS approach is based on an OBS with optimal control to make the energy-optimal decision. However, it requires the adaptations of real-time operating conditions and a dynamic SOC horizon management. These requirements are supported by combining an RBS based on expert and fuzzy rules to compute the SOC target on each sliding window and an LBS based on fuzzy C-mean clustering to enhance the cooperative environment data processing and adapt it to the FHCEV topology. Our approach obtained simple and realistic system behaviors while having an acceptable computing time suitable for real time constraint. It was then designed and validated using a 27-h real-time measured database. The results show the effectiveness of the proposed iEMS concept with an excellent performance close to the optimal offline strategy (an under 2% consumption gap).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3