A Real-Time Dynamic Fuel Cell System Simulation for Model-Based Diagnostics and Control: Validation on Real Driving Data

Author:

Ritzberger Daniel,Hametner Christoph,Jakubek Stefan

Abstract

Fuel cell systems are regarded as a promising candidate in replacing the internal combustion engine as a renewable and emission free alternative in automotive applications. However, the operation of a fuel cell stack fulfilling transient power-demands poses significant challenges. Efficiency is to be maximized while adhering to critical constraints, avoiding adverse operational conditions (fuel starvation, membrane flooding or drying, etc.) and mitigating degradation as to increase the life-time of the stack. Owing to this complexity, advanced model-based diagnostic and control methods are increasingly investigated. In this work, a real time stack model is presented and its experimental parameterization is discussed. Furthermore, the stack model is integrated in a system simulation, where the compressor dynamics, the feedback controls for the hydrogen injection and back-pressure valve actuation, and the purging strategy are considered. The resulting system simulation, driven by the set-point values of the operating strategy is evaluated and validated on experimental data obtained from a fuel cell vehicle during on-road operation. It will be shown how the internal states of the fuel cell simulation evolve during the transient operation of the fuel cell vehicle. The measurement data, for which this analysis is conducted, stem from a fuel cell research and demonstrator vehicle, developed by a consortium of several academic and industrial partners under the lead of AVL List GmbH.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3