Infrared Spectroscopy Studies of Aluminum Oxide and Metallic Aluminum Powders, Part I: Thermal Dehydration and Decomposition

Author:

Ludwig BellamarieORCID,Burke Taryn T.

Abstract

In this work, we study three aluminum oxides (alpha, gamma, boehmite) and various oxidized metallic aluminum powders to observe their dehydration and decomposition behavior using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscopy (SEM). We find that a temperature increase to the aluminum oxides (aluminas) reduces physically adsorbed water molecules to reveal the presence of hydroxyl groups. All three aluminas contained bridged hydroxyls located at 3670 cm−1; we found additional surface hydroxyls, which varied based on the oxidation state of the aluminum atom. Oxidized metallic aluminum powders that were aged resulted in similar behavior; however, the results differed depending on the method of aging. We find that naturally aged aluminum (NA-Al) powders with heavy oxidation in the form of the tri-hydroxide decomposed and did not reveal any detectable surface hydroxyl peaks. When aged using artificial methods (AA-Al), we find both surface hydroxyls, including bridged hydroxyls at 3670, 3700, and 3730 cm−1, and a remaining boehmite-like surface. These results show that metallic aluminum powders can be tailored for specific applications, regardless of age. It also elucidates different ways to pre-process the powders to control the surface oxide layer, corroborated by comparison with the models oxides studied herein.

Funder

Office of Naval Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3