Dimensionless Number Group Analysis of Surface-Treated Powders

Author:

Ludwig Bellamarie1ORCID

Affiliation:

1. The Applied Research Laboratory, The Pennsylvania State University, State College, PA 16804, USA

Abstract

Modeling powder properties remains a complex and difficult area of study because particulate materials can behave differently under variable conditions based on their bulk and surface-level properties. The research presented in this manuscript was designed to support the fundamental understanding of powder systems by joining experimental and theoretical calculations of dimensionless numbers groups for design purposes. In order to do so, this work focused on two critical variables to better understand fluidization design: physical and chemical surface properties. To better resolve the influence of surface properties, surface-treated powders were used. Five different powder samples of varying particle size distribution were characterized using physical property measurements, including pressure drop profiles to obtain the minimum fluidization velocity, density measurements, and particle sizing. Using theoretical equations, the minimum fluidization velocity was also calculated to compare with those obtained experimentally and determine typical dimensionless number groups used in bulk handling system design. The results showed that the theoretically determined values were lower than those calculated using the experimentally umf. In the case of the Reynolds number, the experimental values were 3–20% higher than the theoretical values, which is an important distinction for designing conveying systems and pipeline flow. Similar results were observed for the theoretical and experimental Froude numbers, indicating an important dependence on the cohesive properties of the particle interactions. Additional dimensionless number groups were considered, including the granular bond number and flow factors. To investigate the influence of surface forces, Hamaker constants were utilized for alumina and polydimethylsiloxane in the calculation of the granular bond number. A lower granular bond was observed with a decrease in the Hamaker constant for PDMS, suggesting that the surface forces would be lower for our surface-treated powders.

Funder

Office of Naval Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3