A Satellite Incipient Fault Detection Method Based on Local Optimum Projection Vector and Kullback-Leibler Divergence

Author:

Zhang GeORCID,Yang Qiong,Li Guotong,Leng Jiaxing,Wang Long

Abstract

Timely and effective detection of potential incipient faults in satellites plays an important role in improving their availability and extending their service life. In this paper, the problem of detecting incipient faults using projection vector (PV) and Kullback-Leibler (KL) divergence is studied in the context of detecting incipient faults in satellites. Under the assumption that the variables obey a multidimensional Gaussian distribution and using KL divergence to detect incipient faults, this paper models the optimum PV for detecting incipient faults as an optimization problem. It proves that the PVs obtained by principal component analysis (PCA) are not necessarily the optimum PV for detecting incipient faults. It then compares the on-line probability density function (PDF) with the reference PDF for detecting incipient faults on the local optimum PV. A numerical example and a real satellite fault case were used to assess the validity and superiority of the method proposed in this paper over conventional methods. Since the method takes into account the characteristics of the actual incipient faults, it is more adaptable to various possible incipient faults. Fault detection rates of three simulated faults and the real satellite fault are 98%, 84%, 93% and 92%, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3