Optimization of a Low-Carbon Two-Echelon Heterogeneous-Fleet Vehicle Routing for Cold Chain Logistics under Mixed Time Window

Author:

Wang Ziqi,Wen Peihan

Abstract

Due to the rise of social and environmental concerns on global climate change, developing the low-carbon economy is a necessary strategic step to respond to greenhouse effect and incorporate sustainability. As such, there is a new trend for the cold chain industry to establish the low-carbon vehicle routing optimization model which takes costs and carbon emissions as the measurements of performance. This paper studies a low-carbon vehicle routing problem (LC-VRP) derived from a real cold chain logistics network with several practical constraints, which also takes customer satisfaction into account. A low-carbon two-echelon heterogeneous-fleet vehicle routing problem (LC-2EHVRP) model for cold chain third-party logistics servers (3PL) with mixed time window under a carbon trading policy is constructed in this paper and aims at minimizing costs, carbon emissions and maximizing total customer satisfaction simultaneously. To find the optimal solution of such a nondeterministic polynomial (NP) hard problem, we proposed an adaptive genetic algorithm (AGA) approach validated by a numerical benchmark test. Furthermore, a real cold chain case study is presented to demonstrate the influence of the mixed time window’s changing which affect customers’ final satisfaction and the carbon trading settings on LC-2EHVRP model. Experiment of LC-2EHVRP model without customer satisfaction consideration is also designed as a control group. Results show that customer satisfaction is a critical influencer for companies to plan multi-echelon vehicle routing strategy, and current modest carbon price and trading quota settings in China have only a minimal effect on emissions’ control. Several managerial suggestions are given to cold chain logistics enterprises, governments, and even consumers to help improve the development of cold chain logistics.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3