Abstract
This paper deals with an approximation of a first derivative of a signal using a dynamic system of the first order. After formulating the problem, a proposition and a theorem are proven for a possible approximation structure, which consists of a dynamic system. In particular, a proposition based on a Lyapunov approach is proven to show the convergence of the approximation. The proven theorem is a constructive one and shows directly the suboptimality condition in the presence of noise. Based on these two results, an adaptive algorithm is conceived to calculate the derivative of a signal with convergence in infinite time. Results are compared with an approximation of the derivative using an adaptive Kalman filter (KF).
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献