Fault Identification Method of Transformer Winding based on Gramian Angular Difference Field and Convolutional Neural Network

Author:

Yang Shihao1ORCID,Li Zhenhua1,Yang Xinqiang1,Wu Hairong1

Affiliation:

1. China Three Gorges University College of Electrical Engineering & New Energy, Yichang 443002, China

Abstract

Background: As the frequency of transformer winding faults becomes higher and higher, the frequency response analysis used to detect the winding status has attracted more and more attention. At present, there is still a lack of reliable and intelligent technologies for detecting the state of transformer windings in this field. Objective: This paper focuses on studying a high-precision method for transformer fault diagnosis, which can be easily and effectively applied to daily life. Methods: By changing the detection method, the traditional detection method can not distinguish the problem that the detection data are highly overlapping when identifying the same fault of the head and tail symmetric points, and the problem that the phase is too similar is changed. In order to solve the problem that the fault samples of transformer frequency response curve are scarce and the one-dimensional data cannot be read by partial deep learning method, the one-dimensional data of frequency response curve is first converted into characteristic index and then into a three-dimensional image by moving window calculation method and Gramian Angular difference field transformation. The fault classification is realized by a convolutional neural network. Results: The accuracy of the final model for slice classification reached 100%. Conclusion: Illustrative examples show that the method is distinguishable from different fault types. The traditional method only uses the amplitude of the frequency response curve, but this method displays the two features of the amplitude-phase together in the image. Compared with the traditional method, more features and samples are added to further improve the accuracy of the method. The accuracy of diagnosis results reached 100%, which showed the feasibility of the method.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3