Assessing the Energy, Indoor Air Quality, and Moisture Performance for a Three-Story Building Using an Integrated Model, Part Two: Integrating the Indoor Air Quality, Moisture, and Thermal Comfort

Author:

Heibati SeyedmohammadrezaORCID,Maref WahidORCID,Saber Hamed H.ORCID

Abstract

In this paper, an integrated model that coupled CONTAM and WUFI was developed to assess the indoor air quality (IAQ), moisture, and thermal comfort performance. The coupling method of CONTAM and WUFI is described based on the exchange of airflow rate control variables as infiltration, natural and mechanical ventilation parameters between heat and moisture flow balance equations in WUFI and contaminant flow balances equations in CONTAM. To evaluate the predictions of the integrated model compared to single models of CONTAM and WUFI, four scenarios were used. These scenarios are airtight-fan off, airtight-fan on, leaky-fan off, and leaky-fan on, and were defined for a three-story house subjected to three different climate conditions of Montreal, Vancouver, and Miami. The measures of the simulated indoor CO2, PM2.5, and VOCs obtained by CONTAM; the simulated indoor relative humidity (RH), predicted percentage of dissatisfied (PPD), and predicted mean vote (PMV) obtained by WUFI; and those obtained by the integrated model are compared separately for all scenarios in Montreal, Vancouver, and Miami. Finally, the optimal scenarios are selected. The simulated results of the optimal scenarios with the integrated model method (−28.88% to 46.39%) are different from those obtained with the single models. This is due to the inability of the single models to correct the airflow variables.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3