Numerical Study of Factors Affecting Particle Suction Efficiency of Pick-Up Head of a Regenerative Air Vacuum Sweeper

Author:

Fayzullayevich Jamshid ValievORCID,Tan Gangfeng,Alex Frimpong J.,Wu Yongjia,Agyeman Philip K.ORCID

Abstract

The influence of variable operational conditions affects the performance of particle collection and separation of a regenerative air vacuum sweeper. Therefore, the purpose of this paper was to numerically investigate the factors affecting the particle suction efficiency of the pick-up head. Using computational fluid dynamics (CFD), a model of an integrated pick-up head was developed based on the particle suction process to evaluate the particle removal performance. The realizable k-ε and discrete particle models were utilized to study the gas flow field and solid particle trajectories. The particle structure, sweeping speed, secondary airflow, pressure drop, and distance between the particle suction port and the road surface, as factors that affect the particle removal efficiency, were investigated. The results indicate that the particle suction efficiency increases with decreasing sweeper speed. Furthermore, the particle overall removal efficiency increased with a reduction in the distance between the suction port and the road surface as well as the control of the secondary airflow in the system. By increasing the airflow rate at the suction port, high efficiencies were achieved at a high sweeper speed and high particle densities. At a sweeper speed of 6–10 km/h, the results showed that the secondary airflow recirculation varied between 60 to 80 %, while the high-pressure drop ranged from 2200 to 2400 Pa, and the particle suction efficiency recorded was 95%. The numerical analysis results provide a better understanding of the particle suction process and hence could lead to an improvement in the design of the pick-up head.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference56 articles.

1. Development and performance analysis of a small road sweeper and dust collector;Bao;Proceedings of the 3rd International Symposium on Robotics & Intelligent Manufacturing Technology (ISRIMT),2021

2. Investigation of PM10 concentrations and noise levels of the road sweepers operating in Istanbul-Turkey: A case study;Avsar;Fresen. Environ. Bull.,2010

3. Research on air curtain dust control technology for environmental protection at fully mechanized working faces

4. Effectiveness of street sweeping and washing for controlling ambient TSP

5. Street Dust: Implications for Stormwater and Air Quality, and Environmental Management Through Street Sweeping

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3