UAV Trajectory Optimization in a Post-Disaster Area Using Dual Energy-Aware Bandits

Author:

Amrallah Amr12ORCID,Mohamed Ehab Mahmoud34ORCID,Tran Gia Khanh12ORCID,Sakaguchi Kei12ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

2. Academy for Super Smart Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

3. Department of Electrical Engineering, College of Engineering in Wadi Addawasir, Prince Sattam Bin Abdulaziz University, Wadi Addawasir 11991, Saudi Arabia

4. Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt

Abstract

Over the past few years, with the rapid increase in the number of natural disasters, the need to provide smart emergency wireless communication services has become crucial. Unmanned aerial Vehicles (UAVs) have gained much attention as promising candidates due to their unprecedented capabilities and broad flexibility. In this paper, we investigate a UAV-based emergency wireless communication network for a post-disaster area. Our optimization problem aims to optimize the UAV’s flight trajectory to maximize the number of visited ground users during the flight period. Then, a dual cost-aware multi-armed bandit algorithm is adopted to tackle this problem under the limited available energy for both the UAV and ground users. Simulation results show that the proposed algorithm could solve the optimization problem and maximize the achievable throughput under these energy constraints.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3