UAV Selection for High-Speed Train Communication using OTFS Modulation

Author:

Mohamed Ehab1

Affiliation:

1. Prince Sattam Bin Abdulaziz University

Abstract

Abstract

Providing continuous wireless connectivity for high-speed trains (HSTs) is challenging due to their high speeds, making the installation of numerous ground base stations (BSs) along the HST route an expensive solution, particularly in rural and wilderness areas. This paper proposes using multiple unmanned aerial vehicles (UAVs) to deliver high data rate wireless connectivity for HSTs, taking advantage of their ability to fly, hover, and maneuver at low altitudes. However, autonomously selecting the optimal UAV by the HST is challenging. The chosen UAV should maximize the HST’s achievable data rate and provide an extended HST coverage period to minimize frequent UAVs handovers, constrained by the UAV’s limited battery capacity. The optimization challenge arises from accurately estimating each UAV’s expected coverage period for the HST, given both are moving at high speeds and the UAV’s flying altitude is unknown to the HST. This paper utilizes the estimated HST-UAV channel parameters in the delay-doppler (DD) domain, employing orthogonal time frequency space (OTFS) modulation, to estimate the relative speeds between the HST and UAVs, as well as the UAVs’ flying altitudes. Based on these estimates, HST can predict the maximum coverage period provided by each UAV, allowing for the selection of the best UAV while considering their remaining battery capacities. Numerical analysis demonstrates the effectiveness of the proposed approach compared to other benchmarks in various scenarios.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3