Transcriptome Analysis of Elm (Ulmus pumila) Fruit to Identify Phytonutrients Associated Genes and Pathways

Author:

Zhang ,Zhang ,Li ,Wang ,Qu ,Fan

Abstract

Plant fruit is an important source of natural active phytonutrients that are profitable for human health. Elm (Ulmus pumila) fruit is considered as natural plant food in China that is rich in nutrients. In the present study, high-throughput RNA sequencing was performed in U. pumila edible fruits and leaves and 11,386 unigenes were filtered as dysregulated genes in fruit samples, including 5231 up- and 6155 downregulated genes. Hundreds of pathways were predicted to participate in seed development and phytonutrient biosynthesis in U. pumila by GO, MapMan, and KEGG enrichment analysis, including “seed maturation”, “glycine, serine, and threonine metabolism” and “phenylpropanoid biosynthesis”. ABA-mediated glucose response-related ethylene-activated signaling pathway (e.g., ABI4) were supposed to associate with elm fruit development; unsaturated fatty acids pathway (e.g., ACX2 and SAD) were predicted to participate in determination of fatty acid composition in elm fruit; flavonoid and coumarins biosynthesis (e.g., CYP98A3 and CCoAOMT1) were demonstrated to correlate with the bioactivity of elm fruits in human cancer and inflammation resistance. To provide more information about fruit developmental status, the qRT-PCR analysis for key genes of “phenylpropanoid biosynthesis” and “alpha-Linolenic acid metabolism” were conducted in samples of young fruits, ripe fruit, old fruit, and leaves. Two biosynthetic pathways for unsaturated fatty acid and Jasmonic acid (JA) were deduced to be involved in fruit development in U. pumila and the phenylpropanoid glycoside, syringin, was speculated to accumulate in the early development stages of elm fruit. Our transcriptome data supports molecular clues for seed development and biologically active substances in elm fruits.

Funder

National Natural Science Foundation of China

the Science and Technology Development Foundation of Shandong Province

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3