Study on the Reactivity Activation of Coal Gangue for Efficient Utilization

Author:

Hu Yanshao1,Han Xiaoyan2,Sun Zuozheng2,Jin Peng13,Li Keliang2,Wang Fuke3ORCID,Gong Jinwei2

Affiliation:

1. State Key Laboratory of Coking Coal Resources Green Exploitation, China Pingmei Shenma Group, Pingdingshan 467000, China

2. School of Civil Engineering and Transportation, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

3. Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research, Singapore 138634, Singapore

Abstract

In this study, the research aim is to enhance the activity index of activated coal gangue and study its activation mechanism. The activation process of coal gangue was optimized through orthogonal tests, and the Back-Propagation (BP) neural network model was improved using a genetic algorithm. With the effects of grinding duration, calcination temperature, and calcination duration, the morphological changes and phase transformation processes of coal gangue were studied at the micro and meso levels to clarify the activation mechanism. The results indicated that the effect of calcination temperature on the strength activity index of coal gangue was most significant, followed by grinding duration and calcination duration. The potential activity of coal gangue can be effectively stimulated through mechanical and thermal activation, and the content of potential active minerals in coal gangue powders was also increased. The activation process of coal gangue for the optimal scheme was obtained as grinding at 76 min first and thermal treatment at 54 min at 749 °C. As the thermal activation under 950 °C, some unstable external hydroxyls, and internal hydroxyls in kaolinite from coal gangue were removed, the AlⅥ-O octahedron was destroyed, and kaolinite was transformed into spatially disordered metakaolinite with very high activity.

Funder

State Key Laboratory of Coking Coal Resources Green Exploitation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3