The Design of a Novel Alkali-Activated Binder for Solidifying Silty Soft Clay and the Study of Its Solidification Mechanism

Author:

Jing Yaohui1,Zhang Yannian12ORCID,Zhang Lin2,Wang Qingjie3

Affiliation:

1. School of Civil Engineering, Jilin University of Architecture and Technology, Changchun 130114, China

2. School of Civil Engineering, Dalian Jiaotong University, Dalian 116028, China

3. School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China

Abstract

In order to overcome the problems of the high economic and environmental costs of a traditional ordinary portland cement-based binder, this study used self-combusted coal gangue (SCCG), granulated blast furnace slag (GBFS) and phosphorous slag (PS) to prepare a novel SCCG-GBFS-PS (SGP) ternary alkali-activated binder for solidifying silty soft clay (SC). Firstly, the parameters of the SGP ternary binder were optimized using orthogonal experiments. Then the effects of the SGP ternary binder content (mass ratio of the SGP ternary binder and the SGP-solidified soil), initial water content of SC (mass ratio of SC’ water and SC) and types of additives on the unconfined compressive strength (UCS) of the SGP-solidified soil were analyzed. Finally, the hydration products and microstructure of the SGP-solidified soil were analyzed to investigate the solidification mechanism of the SGP ternary binder. The results showed that the optimal mass ratio of GBFS and PS is 2:1, and the optimal alkali activator content (mass ratio of Na2O and the SGP ternary binder) and modulus of alkali activator (molar ratio of SiO2 and Na2O of alkali activator) were 13% and 1.3, respectively. When the SGP ternary binder content was 16% and the initial water content of SC was 35%, the SGP-solidified soil met the requirement of UCS for tertiary cured soil. The incorporation of triethanolamine and polyvinyl alcohol improved the UCS, while the incorporation of Na2SO4 significantly deteriorated the UCS of the SGP-solidified soil. The C-S-H gels and C(N)-A-S-H gels generated by hydration of the SGP-solidified soil were interspersed, interwoven and adhered to each other to form a network-like space structure that played the roles of skeleton, bonding soil particles and filling pores, which improved the macroscopic properties of the SGP-solidified soil. The results of this study provide a reference for the design and development of a solid waste-based binder for solidifying SC.

Funder

Scientific Research Project of the Education Department of Jilin Province

Key Project of the National Natural Science Foundation of China

Shenyang Science and Technology Plan Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3