Author:
Kolios Stavros,Hatzianastassiou Nikos
Abstract
This study presents the development of an artificial neural network (ANN) model to quantitatively estimate the atmospheric aerosol load (in terms of aerosol optical depth, AOD), with an emphasis on dust, over the Mediterranean basin using images from Meteosat satellites as initial information. More specifically, a back-propagation ANN model scheme was developed to estimate visible (at 550 nm) aerosol optical depth (AOD550 nm) values at equal temporal (15 min) and spatial (4 km) resolutions with Meteosat imagery. Accuracy of the ANN model was thoroughly tested by comparing model estimations with ground-based AOD550 nm measurements from 14 AERONET (Aerosol Robotic NETwork) stations over the Mediterranean for 34 selected days in which significant dust loads were recorded over the Mediterranean basin. Using a testbed of 3076 pairs of modeled and measured AOD550 nm values, a Pearson correlation coefficient (rP) equal to 0.91 and a mean absolute error (MAE) of 0.031 were found, proving the satisfactory accuracy of the developed model for estimating AOD550 nm values.
Funder
State Scholarships Foundation
Subject
General Earth and Planetary Sciences
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献