A Machine Learning Approach to Retrieving Aerosol Optical Depth Using Solar Radiation Measurements

Author:

Logothetis Stavros-Andreas1,Salamalikis Vasileios2,Kazantzidis Andreas1ORCID

Affiliation:

1. Laboratory of Atmospheric Physics, Physics Department, University of Patras, GR-26500 Patras, Greece

2. NILU—Norwegian Institute for Air Research, P.O. Box 100, 2027 Kjeller, Norway

Abstract

Aerosol optical depth (AOD) constitutes a key parameter of aerosols, providing vital information for quantifying the aerosol burden and air quality at global and regional levels. This study demonstrates a machine learning strategy for retrieving AOD under cloud-free conditions based on the synergy of machine learning algorithms (MLAs) and ground-based solar irradiance data. The performance of the proposed methodology was investigated by applying different components of solar irradiance. In particular, the use of direct instead of global irradiance as a model feature led to better performance. The MLA-based AODs were compared to reference AERONET retrievals, which encompassed RMSE values between 0.01 and 0.15, regardless of the underlying climate and aerosol environments. Among the MLAs, artificial neural networks outperformed the other algorithms in terms of RMSE at 54% of the measurement sites. The overall performance of MLA-based AODs against AERONET revealed a high coefficient of determination (R2 = 0.97), MAE of 0.01, and RMSE of 0.02. Compared to satellite (MODIS) and reanalysis (MERRA-2 and CAMSRA) data, the MLA-AOD retrievals revealed the highest accuracy at all stations. The ML-AOD retrievals have the potential to expand and complement the AOD information in non-existing timeframes when solar irradiances are available.

Funder

Hellenic Foundation for Research and Innovation

Research Committee of the University of Patras

Publisher

MDPI AG

Reference83 articles.

1. Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B. (2021). IPCC, 2021: Climate Change 2021: The Physical Science Basis, Cambridge University Press. in press.

2. Aerosol optical properties over Europe: An evaluation of the AQMEII Phase 3 simulations against satellite observations;Balzarini;Atmos. Chem. Phys.,2019

3. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data;Dubovik;Atmos. Chem. Phys.,2012

4. Direct radiative effects during intense Mediterranean desert dust outbreaks;Gkikas;Atmos. Chem. Phys.,2018

5. Korras-Carraca, M.-B., Gkikas, A., Matsoukas, C., and Hatzianastassiou, N. (2021). Global Clear-Sky Aerosol Speciated Direct Radiative Effects over 40 Years (1980–2019). Atmosphere, 12.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3