Analysis of Water Infiltration Characteristics and Hydraulic Parameters of Sierozem Soil under Humic Acid Addition

Author:

Ma Xian1,Bai Yiru12,Liu Xu1,Wang Youqi123

Affiliation:

1. School of Geography and Planning, Ningxia University, Yinchuan 750021, China

2. Breeding Base for State Key Lab of Land Degradation and Ecological Restoration in Northwestern China, Ningxia University, Yinchuan 750021, China

3. School of Ecology and Environment, Ningxia University, Yinchuan 750021, China

Abstract

The farmland in Yinchuan is composed of sierozem soil, which is characterized by high sand content and low organic matter content, resulting in poor water-holding capacity and weak soil structure. Humic acid is a natural organic polymer soil amendment. It is critical to study how humic acid affects soil water infiltration in sierozem soil at the microlevel. A one-dimensional vertical infiltration experiment was conducted to explore how adding different amounts of humic acid (0, 1%, 2%, 3% and 4%) affected the infiltration characteristics and hydraulic parameters of the sierozem soil. The results revealed that the wetting front and cumulative infiltration decreased with the increase in humic acid addition. When the infiltration time was 90 min, the wetting front of the 1%, 2%, 3% and 4% treatments was 6.50%, 10.00%, 15.00% and 21.00% lower than CK (0 for CK), and the cumulative infiltration volume was 4.50%, 11.14%, 18.42% and 23.60% lower than CK, respectively. Among the three infiltration models created by Philip, Horton and Kostiakov, the Kostiakov model (R2 > 0.95) could more accurately describe the soil water infiltration process in the study area. After infiltration, the moisture content of each soil layer increased with the increase in humic acid, which improved the water-holding capacity of the sierozem soil. Using Hydrus-1D to calculate soil hydraulic parameters, we found that the humic acid addition affected the hydraulic parameters. With the increase in the amount of humic acid addition, the retention water content θr and saturated water θs were positively correlated with the humic acid addition amount and negatively correlated with the saturated water conductivity Ks and the reciprocal of air-entry α. The results showed that humic acid could increase the water-holding capacity of soil and improve the rapid water loss and poor water-holding capacity of sierozem soil.

Funder

Key Research and Development Plan of Ningxia Hui Autonomous Region

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3