Effects of gravel on the water infiltration process and hydraulic parameters of stony soil in the eastern foothills of Helan Mountain, China

Author:

Ma Yan,Wang Youqi,Zhang Yuhan,Zhang Ruiyuan,Yuan Cheng,Ma Chengfeng,Bai Yiru

Abstract

AbstractThe investigation into the impact of gravel on water infiltration process and hydraulic parameters in stony soil could offer a theoretical basis to enhance water availability in rocky mountain area. A one-dimensional vertical infiltration experiment was used in this study. Six groups of gravel content of 0% (CK), 10% (W1), 20% (W2), 30% (W3), 40% (W4) and 50% (W5) were established to explore the changes in the wetting front, cumulative infiltration volume and infiltration rate. Then the accuracy of four infiltration models in simulating soil water infiltration processes was evaluated. Finally, Hydrus-1D was used to perform numerical inversion of the soil water content after infiltration. The findings revealed that: (1) When the infiltration time reached 300 min, the wetting front of the W1, W2, W3, W4 and W5 treatments was 11.00%, 17.00%, 32.25%, 38.75% and 54.50% lower than CK, the cumulative infiltration volume was 29.80%, 38.97%, 45.62%, 54.74% and 73.17% lower than CK, and the stable infiltration rate was 50.98%, 52.94%, 66.67%, 68.63% and 86.27% lower than CK. (2) The soil–water infiltration processes were accurately described by the Horton model, the coefficient of determination (R2) > 0.935. (3) The simulation results of Hydrus-1D showed that with the increase of gravel content, the values of the retention water content (θr), saturated water content (θs), shape coefficient (n) and saturated hydraulic conductivity (Ks) were decreased, the values of the reciprocal of air-entry (α) were increased. The value of R2 was more than 0.894, the root mean square error (RMSE) and mean absolute error (MAE) were less than 2%, which demonstrated that the Hydrus-1D model exhibited superior capability in simulating the changes of water content in stony soil in rocky mountain area. The findings of this study demonstrated that gravel could decrease the water infiltration process and affect the water availability. It could provide data support for the water movement process of stony soil and rational utilization of limited water resources in mountainous area.

Funder

the Natural Science Foundation of Ningxia Hui Autonomous Region Project

Ningxia Key research and development projects

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3