One-Dimensional Optimal System for 2D Rotating Ideal Gas

Author:

Paliathanasis AndronikosORCID

Abstract

We derive the one-dimensional optimal system for a system of three partial differential equations, which describe the two-dimensional rotating ideal gas with polytropic parameter γ > 2 . The Lie symmetries and the one-dimensional optimal system are determined for the nonrotating and rotating systems. We compare the results, and we find that when there is no Coriolis force, the system admits eight Lie point symmetries, while the rotating system admits seven Lie point symmetries. Consequently, the two systems are not algebraic equivalent as in the case of γ = 2 , which was found by previous studies. For the one-dimensional optimal system, we determine all the Lie invariants, while we demonstrate our results by reducing the system of partial differential equations into a system of first-order ordinary differential equations, which can be solved by quadratures.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference28 articles.

1. Applications of Lie Groups to Differential Equations;Olver,1993

2. Symmetries and Differential Equations;Bluman,1989

3. CRC Handbook of Lie Group Analysis of Differential Equations, Volume I: Symmetries, Exact Solutions, and Conservation Laws;Ibragimov,2000

4. Lie symmetries of a coupled nonlinear Burgers-heat equation system

5. Autonomous three-dimensional Newtonian systems which admit Lie and Noether point symmetries

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3