Similarity transformations for modified shallow water equations with density dependence on the average temperature

Author:

Paliathanasis Andronikos12ORCID

Affiliation:

1. Institute of Systems Science, Durban University of Technology PO Box 1334 , Durban 4000 , Republic of South Africa

2. Departamento de Matemáticas , Universidad Católica del Norte , Avda. Angamos 0610, Casilla 1280 Antofagasta , Chile

Abstract

Abstract The Lie symmetry analysis is applied for the study of a modified one-dimensional Saint–Venant system in which the density depends on the average temperature of the fluid. The geometry of the bottom we assume that is a plane, while the viscosity term is considered to be nonzero, as the gravitational force is included. The modified shallow water system is consisted by three hyperbolic first-order partial differential equations. The admitted Lie symmetries form a four-dimensional Lie algebra, the A 3,3A 1. However, for the viscosity free model, the admitted Lie symmetries are six and form the A 5,19A 1 Lie algebra. For each Lie algebra we determine the one-dimensional optimal system and we present all the possible independent reductions provided by the similarity transformations. New exact and analytic solutions are calculated for the modified Saint–Venant system.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

Reference31 articles.

1. I. Kinnmark, The Shallow Water Wave Equations: Formulation, Analysis and Application, Berlin, Heidelberg, Springer-Verlag, 1986.

2. W. Y. Tan, Shallow Water Hydrodynamics: Mathematical Theory and Numerical Solution for a Two-Dimensional System of Shallow-Water Equations, New York, Elsevier Science, 1992.

3. N. Yaacob, Z. A. Aziz, and M. S. Norhafihaz, “Modelling of tsunami waves,” Matematika, vol. 24, p. 211, 2008.

4. D. Lanes, “Modeling shallow water waves,” Nonlinearity, vol. 33, p. R1, 2020. https://doi.org/10.1088/1361-6544/ab6c7c.

5. S. I. Iga and Y. Matsuda, “Shear instability in a shallow water model with implications for the venus atmosphere,” J. Atmos. Sci., vol. 62, p. 2514, 2005. https://doi.org/10.1175/jas3484.1.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3